Introduction to Combinatorial Homotopy Theory

نویسنده

  • Francis Sergeraert
چکیده

1 Introduction. Homotopy theory is a subdomain of topology where, instead of considering the category of topological spaces and continuous maps, you prefer to consider as morphisms only the continuous maps up to homotopy, a notion precisely defined in these notes in Section 4. Roughly speaking, you decide not to distinguish two maps which can be continuously deformed into each other; such a weakening of the notion of map is quickly identified as necessary when you intend to apply to Topology the methods of Algebraic Topology. Otherwise the main classification problems of topology are, except in low dimensions, out of scope. If you want to " algebraize " the topological world, you will meet another difficulty. The traditional topological spaces, defined for example through collections of open subsets, cannot be directly processed by a computer; a computer can handle only discrete objects and in a sense topology is the opposite subject. A combina-torial intermediary notion between Topology and Algebra is required. Poincaré started Algebraic Topology about a century ago by using the polyhedra as intermediary objects, but since the fifties, the simplicial notions have been recognized as more appropriate. In this framework of combinatorial topology, the sensible topo-logical spaces can be combinatorially defined, and also installed and processed on a computer. This is valid even for very complicated or abstract spaces such as classifying spaces, functional spaces; the various important functors of algebraic topology can also be implemented as functional objects. In a sense there is a conflict between both previous observations. The homotopy relation is concerned by continuous deformations of maps, while combinatorial models for topological spaces and maps do not seem to allow enough maps to model homotopies. But we will see this apparent obstacle is easily overcome, and the so-called Combinatorial Homotopy Theory is now one of the standard ground theories for Algebraic Topology. In particular, if you claim you are mainly interested by constructive results in Algebraic Topology, it is quickly obvious combinatorial topology is required. Constructive Algebraic Topology is a difficult but fascinating subject, and three main solutions are now available: 1 1. Rolf Schön's solution [21], quite elegant, unfortunately never (?) considered since his remarkable memoir, in particular from a concrete programming point of view. 2. The solution studied for years by this author and several collaborators, see the lecture notes of the previous Map Summer School at Genova [20]. The key point is …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An elementary illustrated introduction to simplicial sets

This is an expository introduction to simplicial sets and simplicial homotopy theory with particular focus on relating the combinatorial aspects of the theory to their geometric/topological origins. It is intended to be accessible to students familiar with just the fundamentals of algebraic topology.

متن کامل

Combinatorial group theory and the homotopy groups of finite complexes

A description of homotopy groups of the 2-dimensional sphere in terms of combinatorial group theory was discovered by the second author in 1994 and given in his thesis [25], with a published version in [27]. In this article we give a combinatorial description of the homotopy groups of k-dimensional spheres with k ≥ 3. The description is given by identifying the homotopy groups as the center of ...

متن کامل

Global Actions, Groupoid Atlases and Applications

Global actions were introduced by A. Bak to give a combinatorial approach to higher K-theory, in which control is kept of the elementary operations through paths and paths of paths. This paper is intended as an introduction to this circle of ideas, including the homotopy theory of global actions, which one obtains naturally from the notion of path of elementary operations. Emphasis is placed on...

متن کامل

Homotopy Locally Presentable Enriched Categories

We develop a homotopy theory of categories enriched in a monoidal model category V. In particular, we deal with homotopy weighted limits and colimits, and homotopy local presentability. The main result, which was known for simplicially-enriched categories, links homotopy locally presentable V-categories with combinatorial model V-categories, in the case where all objects of V are cofibrant.

متن کامل

Applications of Combinatorial Groups

Combinatorial groups together with the groups of natural coalgebra transformations of tensor algebras are linked to the groups of homotopy classes of maps from the James construction to a loop space. This connection gives rise to applications to homotopy theory. The Hopf invariants of the Whitehead products is studied and a rate of exponent growth for the strong version of the Barratt conjectur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008